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Abstract

We prove that any three linearly independent pure quantum states can always
be locally distinguished with nonzero probability regardless of their dimension,
entanglement or multipartite structure. Almost always, all three states can be
unambiguously identified. The only exceptional case, where one state is locally
knowable but the other two are not, is found among multi-qubit states.

PACS numbers: 89.70.+c, 03.65.−w

Global operations on a quantum system can process information in ways that local operations
on the system’s parts cannot. All uses of entanglement in quantum information theory flow
from this one fact, from teleportation [1] to Shor’s factoring algorithm [2]. However a
fundamental question remains unanswered. When is global information about a quantum
system also available locally? This question can be formally posed as a local state
discrimination task. Given one copy of a system in one of a known set of quantum
states {|ψi〉}, how much ‘which state’ information can be gleaned by local operations and
classical communication (LOCC), and how much more information is revealed by global
measurements?

This problem has attracted much attention in recent years, after surprising results showed
perfect local distinguishability was not directly linked to entanglement. Bennett and coworkers
presented sets of orthogonal unentangled states that were not perfectly locally distinguishable
[3]. JW, Short, Hardy and Vedral proved orthogonal pairs of states are always perfectly locally
distinguishable, irrespective of their entanglement [4].

There are two natural approaches to quantum state discrimination. Optimal discrimination
seeks the best possible guess as to the state of the system [5]. Conclusive discrimination
(also called unambiguous discrimination) seeks certain knowledge of the state of the system,
balanced against a possibility of failure [6]. In particular, N linearly independent quantum
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states can be conclusively distinguished by a (N + 1)-outcome generalized measurement,
where N outcomes correspond to correct (that is, error free) identification of the quantum
states, and the remaining outcome corresponds to an inconclusive result, for which one fails
to correctly identify the unknown quantum state. Note that conclusive identification of every
state is not possible if the states are linearly dependent [7].

It follows directly from the results of Walgate et al [4] and Virmani et al [8] that local
parties can always gain some amount of ‘which state’ information about the pure state of a
shared system, and use it to improve their guesswork. Optimal state discrimination is always
locally feasible in this sense, although the local optimum may be significantly worse than
the global. Conclusive discrimination is more interesting. All pairs of pure quantum states
can be conclusively discriminated equally well locally and globally [9]. Generically, a small
number of pure states (proportional to the dimension of the subsystems) can be conclusively
discriminated with non-negligible probability [15]. But in every multipartite dimensionality
there are sets of four pure quantum states that are not conclusively locally distinguishable
at all. In this case local parties can never gain certain knowledge of which state they possess;
the Bell states are the simplest example of such a set [10].

So two states are always conclusively distinguishable, and four states can be conclusively
indistinguishable. We complete the picture by showing that provided they are linearly
independent (only linearly independent states are globally distinguishable) three pure quantum
states can be conclusively locally distinguished. Local protocols may not succeed as often as
global measurements, but they can succeed some of the time. No triplet of pure states, no
matter how entangled, conceals any fraction of its ‘which state’ information from local parties
with certainty.

We present our results in the following framework. A multipartite quantum system Q is
shared between n different local parties, each with access to one of n local Hilbert spaces:
HQ = ⊗n

j=1 Hj . It has been prepared in one of a known set of possible pure states S = {|ψi〉},
each with some nonzero (but potentially unknown) probability pi . The local parties are set
the task of discovering with certainty which of the states S they have been given, using only
LOCC. We will use the following definitions.

Definition 1. A state |ψi〉 ∈ S is conclusively locally identifiable if and only if there is a
LOCC protocol whereby with some nonzero probability p > 0 it can be determined that Q
was certainly prepared in state |ψi〉.
Definition 2. A set of states S is conclusively locally distinguishable if and only if every state
in S is conclusively locally identifiable.

Conclusive state identification has qualitative links to entanglement. It was proved by
Horodecki et al that the states of a complete orthonormal basis are conclusively locally
identifiable states if and only if they are product states [11]. We show below in corollary 1
that if no members of an incomplete basis of orthogonal states are conclusively identifiable
then the set must be completely entangled.

We begin by establishing a necessary and sufficient condition for a set of states to be
conclusively locally distinguishable, first proved by Chefles [12]. We outline a simplified
version of Chefles’ specific to the case of pure states. We will then show how this condition
holds for sets of three states.

Lemma 1 (Chefles). Let a multipartite quantum system Q be prepared in one of a set of pure,
linearly independent multipartite quantum states S = {|ψi〉}. Let |ψx〉 ∈ S.

If and only if there exists a product state |φ〉 such that ∀ i �= x〈ψi |φ〉 = 0, and 〈ψx |φ〉 �= 0,
then |ψx〉 is conclusively locally identifiable in S.
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Proof of sufficiency. Assume a product’s state |φ〉 with the above properties exists. The
parties can locally project into a product basis of HQ that includes |φ〉. If the state of Q is
|ψx〉 they will obtain the result projecting onto |φ〉 with probability |〈ψx |φ〉|2, which is greater
than zero. In this case, they have conclusively locally identified |ψx〉 since no other state |ψi〉
ever yields this projection result. �

Proof of necessity. Assume that |ψx〉 is conclusively locally identifiable. There is a
LOCC protocol, describable by a separable superoperator, which can produce at least one
measurement outcome conclusively identifying |ψx〉. This outcome corresponds to some
separable POVM element M†M = A†A ⊗ B†B ⊗ . . ., which because it identifies |ψx〉 must
satisfy ∀ i �= x〈ψi |M†M|ψi〉 = 0, and 〈ψx |M†M|ψx〉 �= 0. M†M is decomposable into a set of
rank-one projection operators onto product states {|Pl〉}: M†M = ∑

jk... A
†
jAj ⊗B

†
kBk ⊗. . . =∑

l (|Pl〉〈Pl |)†(|Pl〉〈Pl|). These product states must satisfy ∀ l ∀ i �= x〈ψi |P †
l Pl|ψi〉 = 0 and

∃ l〈ψx |P †
l Pl|ψx〉 �= 0. Let the product state satisfying both conditions be |φ〉. Thus there

exists a product state |φ〉 such that ∀ i �= x〈ψi |φ〉 = 0 and 〈ψx |φ〉 �= 0. �

Corollary 1. All product states belonging to sets of pure orthogonal states are conclusively
locally identifiable and the subset of unentangled members of such a set is conclusively locally
distinguishable.

Proof. If S = {|ψi〉} is a set of orthogonal pure states, and |ψx〉 ∈ S is a product state, then
|φ〉 = |ψx〉 satisfies the sufficient condition of lemma 1. �

Interestingly, although sets of pure orthogonal states must be completely entangled in
order to be completely conclusively indistinguishable, linearly independent states are not
so restricted. In fact, Duan et al have recently shown that there are sets of product states
that are completely conclusively indistinguishable—a strong form of ‘nonlocality without
entanglement’ [14]. JW and Scott have shown that generic sets of states obey the same
numerical threshold for conclusive distinguishability whether they are entangled or not [15].

Theorem 1. Let a multipartite quantum system Q be prepared in one of a set of three pure,
linearly independent multipartite quantum states S = {|ψ1〉, |ψ2〉, |ψ3〉}.

There exists |ψx〉 ∈ S such |ψx〉 is conclusively locally identifiable.

We will prove this result separately for three different cases. First we will deal with
systems whose three possible states cannot be composed on a chain of qubits (i.e. where
Span(S) ⊂ HQ �= ⊗n

i=1 H2), with each local party holding just one qubit). Then we will
consider H2 ⊗ H2 systems. Lastly, we will prove our result for larger arrays of qubits:
HQ = ⊗n>2

i=1 H2. These three cases cover all possible multipartite situations.

Lemma 2. (higher-dimensional states) Let a multipartite quantum system Q be prepared in one
of a set of three pure, linearly independent multipartite quantum states S = {|ψ1〉, |ψ2〉, |ψ3〉}.
Let the space spanned by S be such that it cannot be expressed in the form

⊗n
i=1 H2.

S is conclusively locally distinguishable.

Proof. If the space spanned by S cannot be expressed in the form
⊗n

i=1 H2, then at least one
of the local parties has an irreducibly three- or higher-dimensional Hilbert space Hi . We call
this party ‘Alice’. We can thus write the states:
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|ψ1〉 =
∑

i

ai |i〉A|ηi〉BC...,

|ψ2〉 =
∑

i

bi |i〉A|νi〉BC...,

|ψ3〉 =
∑

i

ci |i〉A|μi〉BC...,

(1)

where the vectors |ηi〉BC..., |νi〉BC... and |μi〉BC... are normalized, and ai, bi and ci are complex
coefficients satisfying

∑
i a

∗
i ai = 1. Following the strategy of lemma 1, we will show that

there exists a product state |φ〉 such that 〈ψ1|φ〉 = 〈ψ2|φ〉 = 0 and 〈ψ3|φ〉 �= 0. Let us thus
write the product state:

|φ〉 =
(∑

i

xi |i〉A
)

⊗ |θ〉BC...

with
∑

i x
∗
i xi = 1. We choose |θ〉 such that it is a product state amongst the parties B,C . . .

and so that equations (2) are linearly independent. We can always do this. (Note in fact
that a randomly chosen |θ〉 will have this property with probability one, thanks to the linear
independence of the states in S.) |φ〉 must satisfy the following conditions:

〈ψ1|φ〉 =
∑

i

xia
∗
i 〈ηi |θ〉 = 0,

〈ψ2|φ〉 =
∑

i

xib
∗
i 〈νi |θ〉 = 0,

〈ψ3|φ〉 =
∑

i

xic
∗
i 〈μi |θ〉 �= 0.

(2)

The quantities a∗
i 〈ηi |θ〉, b∗

i 〈νi |θ〉 and c∗
i 〈μi |θ〉 are all fixed by our arbitrary choice of basis

{|i〉A}, and product state |θ〉BC.... There are at least three variables xi , because HA �= 2. With
three linearly independent equations and three variables, there is always a solution for the xi .
(Note that normalization does not further restrict the solution of these equations, as they only
specify sums to ‘zero’ or ‘not zero’.) Therefore, we can always find a product state |φ〉 that
is orthogonal to |ψ1〉 and |ψ2〉, but nonorthogonal to |ψ3〉. By lemma 1, this means |ψ3〉 is
conclusively locally identifiable in S.

The same reasoning applies to |ψ1〉 and |ψ2〉, so S is conclusively locally distinguishable.
�

Surprisingly, the only exceptions to this ‘one for all and all for one’ structure are found amongst
the simplest quantum systems—qubits.

Lemma 3 (two qubits). Let a multipartite quantum system Q be prepared in one of a set
of three pure, linearly independent multipartite quantum states S = {|ψ1〉, |ψ2〉, |ψ3〉}. Let
HQ = H2 ⊗ H2.

There exists |ψx〉 ∈ S such |ψx〉 is conclusively locally identifiable.

Proof. Either at least two of the three members of S are product states, or else at least two of
them are entangled states. Whichever is the case, we label the states such that |ψ1〉 and |ψ2〉
are similar—either they are both product states, or they are both entangled. We will show
that |ψ3〉 is then conclusively locally identifiable. |ψ1〉 and |ψ2〉 are linearly independent and
span a two-dimensional subspace of HQ. Let us call this subspace Ha , and its complementary
subspace H⊥

a .
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If |ψ1〉 and |ψ2〉 are product states, it follows trivially from their linear independence that
Ha can be spanned by a pair of orthogonal product states. Its complementary subspace H⊥

a

must also be spanned by a pair of orthogonal product states.
If |ψ1〉 and |ψ2〉 are entangled states, exactly the same is true—both Ha and H⊥

a must
be spanned by a pair of product states. This is easy to see directly—writing the states in the
general forms |ψ1〉 = a|00〉 + b|11〉 and |ψ2〉 = c|01〉 + d|10〉, where a, b, c and d are nonzero

complex numbers; the states satisfying |φA〉|φB〉 = |ψ1〉 +
√

ab
cd

|ψ2〉 are the (unnormalized)

product states spanning Ha . H⊥
a is spanned by {|φA〉|φ⊥

B 〉, |φ⊥
A 〉|φB〉).

|ψ3〉 is linearly independent of |ψ1〉 and |ψ2〉, so it has at least some support on H⊥
a .

It therefore has at least some support on one of the two product states spanning H⊥
a . Let

this product state be |φ〉. In line with lemma 1, |φ〉 is orthogonal to |ψ1〉 and |ψ2〉, but
nonorthogonal to |ψ3〉, and therefore |ψ3〉 is conclusively locally identifiable. �

By symmetry, if all the states in S are entangled, or if they are all product states, then they
are all conclusively locally identifiable and S is conclusively locally distinguishable. If two of
them are product states, it is again simple to show they are all conclusively locally identifiable
(a consequence of the fact that every set of three orthogonal 2 ⊗ 2 states two of which are
product states is perfectly locally distinguishable [13]). But an exception occurs when two
of the states are entangled: only can the product state be conclusively locally identified. For
example, the set of states:

|ψ1〉 = α1|0〉A|0〉B + α2|1〉A|1〉B,

|ψ2〉 = β1|0〉A|0〉B + β2|1〉A|1〉B,

|ψ3〉 = |0〉A|1〉B
(3)

is not conclusively distinguishable. |ψ3〉 is conclusively locally identifiable, but neither |ψ1〉
nor |ψ2〉 can satisfy the necessary condition for conclusive local identifiability established by
lemma 1. This asymmetric possibility is unique to triplets of qubit states, but at least one state
can always be identified.

Lemma 4 (many qubits). Let a multipartite quantum system Q be prepared in one of a set
of three pure, linearly independent multipartite quantum states S = {|ψ1〉, |ψ2〉, |ψ3〉}. Let
HQ = ⊗n>2

i=1 H2.
There exists |ψx〉 ∈ S such |ψx〉 is conclusively locally identifiable.

Proof. We begin by considering the Hilbert space of the system with Alice and Bob’s subspaces
combined into one four-dimensional subspace HAB . We can thus write the states:

|ψ1〉 =
2∑

i,j ...=1

aij...|ηij...〉AB |ij . . .〉CD...,

|ψ2〉 =
2∑

i,j ...=1

bij...|νij...〉AB |ij . . .〉CD...,

|ψ3〉 =
2∑

i,j ...=1

cij ...|μij...〉AB |ij . . .〉CD....

(4)

There are n − 2 indices i, j . . . . The states {|ij . . .〉CD...} form an arbitrary canonical basis
for the

⊗n−2 H2 Hilbert space shared by Carol, Douglas et al. The complex coefficients
aij..., bij ... and cij ... satisfy normalization constraints.
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From lemma 2, we know a state |φ〉 exists that is unentangled under the HAB

⊗n−2 H2

partition and which is orthogonal to |ψ1〉 and |ψ2〉 but nonorthogonal to |ψ3〉. Let us write this
state |φ〉 = |θ〉AB ⊗ |ω〉CD.... Our choice of canonical basis {|ij . . .〉CD...} for equations (4)
was arbitrary, so we can specify retroactively that |ω〉CD... = |00 . . . 0〉CD.... Then we know
that |φ〉 satisfies the following equations:

〈ψ1|φ〉 = a∗
ij ...〈ηij...|θ〉 = 0,

〈ψ2|φ〉 = b∗
ij ...〈νij...|θ〉 = 0,

〈ψ3|φ〉 = c∗
ij ...〈μij...|θ〉 �= 0.

(5)

Clearly this can be true only if |μij...〉AB is linearly independent from both |ηij...〉AB and
|νij...〉AB .

|ηij...〉AB and |νij...〉AB are either linearly independent of one another, or they are identical.
If they are identical, we can trivially find a candidate for |θ〉AB that is a product state in
HA ⊗ HB , and |ψ3〉 is conclusively identifiable state by lemma 1. If they are not identical,
then {|ηij...〉AB, |νij...〉AB, |μij...〉AB} is a set of three pure linearly independent states, and from
lemma 3 there is some product state |ξ 〉 that is nonorthogonal to exactly one of them. In this
case, the state |ξ 〉AB ⊗ |ω〉CD... is a completely unentangled state in HQ satisfying lemma 1
for one of the three states in S (though not necessarily |ψ3〉!). Therefore there is some state in
S that is conclusively locally identifiable. �

This is the third and final step toward our proof of theorem 1. In all three possible cases, all
triplets of pure linearly independent quantum states have been shown to contain a conclusively
identifiable state.

If a set of states contains an identifiable member then complete ‘which state’ information
is potentially locally discoverable. Otherwise it is necessarily hidden from local observation.
In spite of the known links between entanglement and conclusive identifiability, we have
shown that any three states can always be locally induced to reveal this information with
some probability, no matter how entangled. Furthermore, unless the triplet is a very specific
set of multi-qubit states, it is conclusively locally distinguishable and all possible states can
be unambiguously identified. An open question is regarding finding optimal local protocols,
which would allow a quantitative comparison of the local and global situations.
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